3.2.15 \(\int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{3/2}} \, dx\) [115]

3.2.15.1 Optimal result
3.2.15.2 Mathematica [C] (warning: unable to verify)
3.2.15.3 Rubi [A] (verified)
3.2.15.4 Maple [A] (verified)
3.2.15.5 Fricas [F(-1)]
3.2.15.6 Sympy [F]
3.2.15.7 Maxima [F(-2)]
3.2.15.8 Giac [F]
3.2.15.9 Mupad [F(-1)]

3.2.15.1 Optimal result

Integrand size = 25, antiderivative size = 310 \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{3/2}} \, dx=\frac {a^2 \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}-\frac {a^2 \arctan \left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}-\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}+\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}-\frac {4 a^2}{d e \sqrt {e \tan (c+d x)}}-\frac {4 a^2 \cos (c+d x)}{d e \sqrt {e \tan (c+d x)}}-\frac {4 a^2 \cos (c+d x) E\left (\left .c-\frac {\pi }{4}+d x\right |2\right ) \sqrt {e \tan (c+d x)}}{d e^2 \sqrt {\sin (2 c+2 d x)}} \]

output
1/2*a^2*arctan(1-2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))/d/e^(3/2)*2^(1/2)-1 
/2*a^2*arctan(1+2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))/d/e^(3/2)*2^(1/2)-1/ 
4*a^2*ln(e^(1/2)-2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+c))/d/e^(3/2 
)*2^(1/2)+1/4*a^2*ln(e^(1/2)+2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+ 
c))/d/e^(3/2)*2^(1/2)-4*a^2/d/e/(e*tan(d*x+c))^(1/2)-4*a^2*cos(d*x+c)/d/e/ 
(e*tan(d*x+c))^(1/2)+4*a^2*cos(d*x+c)*(sin(c+1/4*Pi+d*x)^2)^(1/2)/sin(c+1/ 
4*Pi+d*x)*EllipticE(cos(c+1/4*Pi+d*x),2^(1/2))*(e*tan(d*x+c))^(1/2)/d/e^2/ 
sin(2*d*x+2*c)^(1/2)
 
3.2.15.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.76 (sec) , antiderivative size = 238, normalized size of antiderivative = 0.77 \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{3/2}} \, dx=\frac {a^2 \left (-24 \left (1+e^{i (c+d x)}+e^{2 i (c+d x)}+e^{3 i (c+d x)}\right )-3 \sqrt {-1+e^{4 i (c+d x)}} \arctan \left (\sqrt {-1+e^{4 i (c+d x)}}\right )+6 \sqrt {-1+e^{2 i (c+d x)}} \sqrt {1+e^{2 i (c+d x)}} \text {arctanh}\left (\sqrt {\frac {-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )+8 e^{3 i (c+d x)} \sqrt {1-e^{4 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},e^{4 i (c+d x)}\right )\right )}{6 d e \left (1+e^{2 i (c+d x)}\right ) \sqrt {e \tan (c+d x)}} \]

input
Integrate[(a + a*Sec[c + d*x])^2/(e*Tan[c + d*x])^(3/2),x]
 
output
(a^2*(-24*(1 + E^(I*(c + d*x)) + E^((2*I)*(c + d*x)) + E^((3*I)*(c + d*x)) 
) - 3*Sqrt[-1 + E^((4*I)*(c + d*x))]*ArcTan[Sqrt[-1 + E^((4*I)*(c + d*x))] 
] + 6*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh 
[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]] + 8*E^((3*I)* 
(c + d*x))*Sqrt[1 - E^((4*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, 
E^((4*I)*(c + d*x))]))/(6*d*e*(1 + E^((2*I)*(c + d*x)))*Sqrt[e*Tan[c + d*x 
]])
 
3.2.15.3 Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 310, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {3042, 4374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^2}{(e \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}{\left (-e \cot \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4374

\(\displaystyle \int \left (\frac {a^2}{(e \tan (c+d x))^{3/2}}+\frac {a^2 \sec ^2(c+d x)}{(e \tan (c+d x))^{3/2}}+\frac {2 a^2 \sec (c+d x)}{(e \tan (c+d x))^{3/2}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {a^2 \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}-\frac {a^2 \arctan \left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d e^{3/2}}-\frac {a^2 \log \left (\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{3/2}}+\frac {a^2 \log \left (\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{3/2}}-\frac {4 a^2 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{d e^2 \sqrt {\sin (2 c+2 d x)}}-\frac {4 a^2}{d e \sqrt {e \tan (c+d x)}}-\frac {4 a^2 \cos (c+d x)}{d e \sqrt {e \tan (c+d x)}}\)

input
Int[(a + a*Sec[c + d*x])^2/(e*Tan[c + d*x])^(3/2),x]
 
output
(a^2*ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*e^(3/2 
)) - (a^2*ArcTan[1 + (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*e 
^(3/2)) - (a^2*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[e*Tan[c + 
 d*x]]])/(2*Sqrt[2]*d*e^(3/2)) + (a^2*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] + 
 Sqrt[2]*Sqrt[e*Tan[c + d*x]]])/(2*Sqrt[2]*d*e^(3/2)) - (4*a^2)/(d*e*Sqrt[ 
e*Tan[c + d*x]]) - (4*a^2*Cos[c + d*x])/(d*e*Sqrt[e*Tan[c + d*x]]) - (4*a^ 
2*Cos[c + d*x]*EllipticE[c - Pi/4 + d*x, 2]*Sqrt[e*Tan[c + d*x]])/(d*e^2*S 
qrt[Sin[2*c + 2*d*x]])
 

3.2.15.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4374
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_))^(n_), x_Symbol] :> Int[ExpandIntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[ 
c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]
 
3.2.15.4 Maple [A] (verified)

Time = 4.95 (sec) , antiderivative size = 536, normalized size of antiderivative = 1.73

method result size
parts \(\frac {2 a^{2} e \left (-\frac {1}{e^{2} \sqrt {e \tan \left (d x +c \right )}}-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \tan \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \tan \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{2} \left (e^{2}\right )^{\frac {1}{4}}}\right )}{d}-\frac {2 a^{2}}{d e \sqrt {e \tan \left (d x +c \right )}}-\frac {2 a^{2} \sqrt {2}\, \left (-2 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticE}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )+\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-2 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticE}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) \sec \left (d x +c \right )+\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) \sec \left (d x +c \right )+\sqrt {2}\right )}{d e \sqrt {e \tan \left (d x +c \right )}}\) \(536\)
default \(\text {Expression too large to display}\) \(976\)

input
int((a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
2*a^2/d*e*(-1/e^2/(e*tan(d*x+c))^(1/2)-1/8/e^2/(e^2)^(1/4)*2^(1/2)*(ln((e* 
tan(d*x+c)-(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*tan(d* 
x+c)+(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/ 
2)/(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*ta 
n(d*x+c))^(1/2)+1)))-2*a^2/d/e/(e*tan(d*x+c))^(1/2)-2*a^2/d*2^(1/2)/e/(e*t 
an(d*x+c))^(1/2)*(-2*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(cot(d*x+c)-csc(d*x+c 
)+1)^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticE((csc(d*x+c)-cot(d*x+c)+ 
1)^(1/2),1/2*2^(1/2))+(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(cot(d*x+c)-csc(d*x+ 
c)+1)^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticF((csc(d*x+c)-cot(d*x+c) 
+1)^(1/2),1/2*2^(1/2))-2*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(cot(d*x+c)-csc(d 
*x+c)+1)^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticE((csc(d*x+c)-cot(d*x 
+c)+1)^(1/2),1/2*2^(1/2))*sec(d*x+c)+(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(cot( 
d*x+c)-csc(d*x+c)+1)^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticF((csc(d* 
x+c)-cot(d*x+c)+1)^(1/2),1/2*2^(1/2))*sec(d*x+c)+2^(1/2))
 
3.2.15.5 Fricas [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate((a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(3/2),x, algorithm="fricas")
 
output
Timed out
 
3.2.15.6 Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{3/2}} \, dx=a^{2} \left (\int \frac {1}{\left (e \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx + \int \frac {2 \sec {\left (c + d x \right )}}{\left (e \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx + \int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (e \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx\right ) \]

input
integrate((a+a*sec(d*x+c))**2/(e*tan(d*x+c))**(3/2),x)
 
output
a**2*(Integral((e*tan(c + d*x))**(-3/2), x) + Integral(2*sec(c + d*x)/(e*t 
an(c + d*x))**(3/2), x) + Integral(sec(c + d*x)**2/(e*tan(c + d*x))**(3/2) 
, x))
 
3.2.15.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{3/2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(3/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.2.15.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{3/2}} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\left (e \tan \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate((a*sec(d*x + c) + a)^2/(e*tan(d*x + c))^(3/2), x)
 
3.2.15.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{3/2}} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (e\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((a + a/cos(c + d*x))^2/(e*tan(c + d*x))^(3/2),x)
 
output
int((a + a/cos(c + d*x))^2/(e*tan(c + d*x))^(3/2), x)